iterator for vector(对于ector来说, iterator可以直接复用基类的base iterator, 因为迭代模式是随机访问的, 并且vector的内存布局是连续的, 所以vector的iterator可以复用base iterator) iterator之后就是my_vector具体实现。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 template <typename T>class vector_iterator : public mystl::iterator<random_access_iterator_tag, T> {public : using iterator_type = T*; using iterator_category = random_access_iterator_tag; using value_type = T; using difference_type = ptrdiff_t ; using pointer = T*; using reference = T&; private : pointer ptr_; public : vector_iterator () : ptr_ (nullptr ) {} explicit vector_iterator (pointer ptr) : ptr_(ptr) { } reference operator *() const {return *ptr_;} pointer operator ->() const {return ptr_;} vector_iterator& operator ++() {++ptr_;return *this ;} vector_iterator operator ++(int ) { vector_iterator temp = *this ; ++ptr_; return temp; } vector_iterator& operator --() {--ptr_;return *this ;} vector_iterator operator --(int ) { vector_iterator temp = *this ; --ptr_; return temp; } vector_iterator operator +(difference_type n) const { return vector_iterator (ptr_ + n); } vector_iterator operator -(difference_type n) const { return vector_iterator (ptr_ - n); } difference_type operator -(const vector_iterator& other) const { return ptr_ - other.ptr_; } bool operator ==(const vector_iterator& other) const { return ptr_ == other.ptr_; } bool operator !=(const vector_iterator& other) const { return ptr_ != other.ptr_; } bool operator <(const vector_iterator& other) const { return ptr_ < other.ptr_; } bool operator >(const vector_iterator& other) const { return ptr_ > other.ptr_; } pointer base () const { return ptr_;} };
And my vector with my new vector iterator:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 #ifndef MY_VECTOR_H #define MY_VECTOR_H #include <stdexcept> #include <memory> #include "my_allocator.h" #include "my_iterator.h" namespace mystl {template <class T , class Alloc = MyAllocator<T>>class MyVector {public : using value_type = T; using allocator_type = Alloc; using size_type = std::size_t ; using difference_type = std::ptrdiff_t ; using reference = value_type&; using const_reference = const value_type&; using pointer = typename allocator_type::value_type*; using const_pointer = const typename allocator_type::value_type*; using iterator = vector_iterator<value_type>; using const_iterator = vector_iterator<const value_type>; using reverse_iterator = mystl::reverse_iterator<iterator>; using const_reverse_iterator = mystl::reverse_iterator<const_iterator>; private : allocator_type alloc_; pointer start_; pointer finish_; pointer end_of_storage_; public : MyVector () : start_ (nullptr ), finish_ (nullptr ), end_of_storage_ (nullptr ) {}; explicit MyVector (size_type n, const_reference value = value_type()) : start_(alloc_.allocate(n)), finish_(start_), end_of_storage_(start_ + n) { std::uninitialized_fill_n (start_, n, value); finish_ = end_of_storage_; } MyVector (std::initializer_list<value_type> ilist){ start_ = alloc_.allocate (ilist.size ()); finish_ = start_; end_of_storage_ = start_ + ilist.size (); for (const auto & item : ilist) { alloc_.construct (finish_, item); ++finish_; } } ~MyVector () { clear (); if (start_) { alloc_.deallocate (start_, end_of_storage_ - start_); } } size_type size () const noexcept { return static_cast <size_type>(finish_ - start_); } size_type capacity () const noexcept { return static_cast <size_type>(end_of_storage_ - start_); } bool empty () const noexcept { return start_ == finish_; } reference operator [](size_type i) noexcept { return start_[i]; } const_reference operator [](size_type i) const noexcept { return start_[i]; } reference at (size_type i) { if (i >= size ()) { throw std::out_of_range ("Index out of range" ); } return start_[i]; } void push_back (const_reference value) { if (finish_ == end_of_storage_) { reallocate (); } alloc_.construct (finish_, value); ++finish_; } void pop_back () { if (empty ()) { throw std::out_of_range ("Vector is empty" ); } --finish_; alloc_.destroy (finish_); } void clear () noexcept { while (finish_ != start_) { --finish_; alloc_.destroy (finish_); } } void reserve (size_type new_cap) { if (new_cap <= capacity ()){ return ; } reallocate_to (new_cap); } void resize (size_type new_size, const_reference value = value_type()) { size_type old_size = size (); if (new_size < old_size){ while (finish_ != start_ + new_size){ --finish_; alloc_.destroy (finish_); } }else if (new_size > old_size){ if (new_size > capacity ()){ reallocate_to (std::max (new_size, capacity () * 2 )); } while (finish_ != start_ + new_size){ alloc_.construct (finish_, value); ++finish_; } } } void shrink_to_fit () { if (capacity () == size ()) return ; reallocate_to (size ()); } iterator begin () noexcept { return iterator (start_); } iterator end () noexcept { return iterator (finish_); } const_iterator begin () const noexcept { return const_iterator (start_); } const_iterator end () const noexcept { return const_iterator (finish_); } reverse_iterator rbegin () noexcept { return reverse_iterator (iterator (finish_)); } reverse_iterator rend () noexcept { return reverse_iterator (iterator (start_)); } const_reverse_iterator rbegin () const noexcept { return const_reverse_iterator (const_iterator (finish_)); } const_reverse_iterator rend () const noexcept { return const_reverse_iterator (const_iterator (start_)); } private : void reallocate () { size_type old_size = size (); size_type old_capacity = capacity (); size_type new_capacity = old_capacity == 0 ? 1 : old_capacity * 2 ; pointer new_start = alloc_.allocate (new_capacity); pointer new_finish = new_start; for (pointer p = start_; p != finish_; ++p, ++new_finish){ alloc_.construct (new_finish, std::move (*p)); alloc_.destroy (p); } if (start_){ alloc_.deallocate (start_, old_capacity); } start_ = new_start; finish_ = new_finish; end_of_storage_ = start_ + new_capacity; } void reallocate_to (size_type new_cap) { size_type old_size = size (); pointer new_start = alloc_.allocate (new_cap); pointer new_finish = new_start; for (pointer p = start_; p != finish_; ++p, ++new_finish){ alloc_.construct (new_finish, std::move (*p)); alloc_.destroy (p); } if (start_){ alloc_.deallocate (start_, old_size); } start_ = new_start; finish_ = new_finish; end_of_storage_ = start_ + new_cap; } }; } #endif