在 C++ STL(标准模板库)中,std::deque 是一种 双端队列(double-ended queue),它是一种支持在 序列两端高效插入和删除 的序列式容器。
一、deque 的基本概念
deque 是 “double-ended queue” 的缩写。 它类似于 std::vector,但有一个关键区别:
特性
vector
deque
随机访问
✅ O(1)
✅ O(1)
在末尾插入/删除
✅ O(1)
✅ O(1)
在开头插入/删除
❌ O(n)
✅ O(1)
连续内存
✅
❌ (分段存储)
因此:
如果你只在尾部操作,用 vector;
如果你需要频繁在两端插入或删除,用 deque。
二、deque 的底层结构
deque 并不是像 vector 一样存放在一整块连续内存中,而是:
由一系列固定大小的内存块(buffer)组成,再由一个中央的“map(指针数组)”来管理这些块。
大致结构如下:
[block1] → [block2] → [block3] → … ↑ ↑ | | map[0] map[1] …
每个 block 存放若干元素, 这样在两端扩容时,只需分配或释放一个新的 block,而不需要像 vector 那样整体拷贝。
三、deque 的常用接口
1 2 3 4 5 6 7 dq.push_back (1 ); dq.push_front (2 ); dq.pop_back (); dq.pop_front (); dq.front (); dq.back (); dq[i];
四、时间复杂度总结
操作
时间复杂度
随机访问(operator[])
O(1)
push_back / push_front
O(1) 均摊
pop_back / pop_front
O(1)
插入/删除中间元素
O(n)
查找
O(n)
五、典型应用场景
滑动窗口问题
// 维护单调队列 deque dq;
用于存储窗口中的元素索引,常见于算法题(如最大滑动窗口)。
队列实现
比如 BFS(广度优先搜索)
queue q; // 底层一般就是用 deque 实现的
需要双端插入删除的缓存结构
LRU 缓存、任务调度、模拟双端队列等。
六、注意事项
因为 deque 的存储不是连续的, 不能直接使用 &dq[0] 获得一个连续数组指针。
若需要和 C 接口交互(如 memcpy),应使用 vector。
迭代器在扩容或插入删除时可能失效(尤其是中间位置)。
deque 的 iterator deque_iterator —— 双端块迭代器 1️⃣ 数据结构 pointer cur; // 当前元素 pointer first; // 当前块的起始位置 pointer last; // 当前块的末尾(one past) map_pointer node; // 当前块在 map_ 中的位置
这些成员让迭代器能定位在“块 + 块内偏移”两个层面上。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 constexpr size_t __deque_buffer_size(size_t n, size_t sz){ return n != 0 ? n : (sz < 512 ? size_t (512 / sz) : size_t (1 )); } template <typename T, typename Ref, typename Ptr>class deque_iterator : public mystl::iterator<mystl::random_access_iterator_tag, T>{public : using self = deque_iterator<T,Ref, Ptr>; using base_type = mystl::iterator<mystl::random_access_iterator_tag, T>; using value_type = typename base_type::value_type; using difference_type = typename base_type::difference_type; using pointer = Ptr; using reference = Ref; using map_pointer = T**; pointer cur{nullptr }; pointer first{nullptr }; pointer last{nullptr }; map_pointer node{nullptr }; static size_t buffer_size () { return __deque_buffer_size(0 , sizeof (T)); } deque_iterator () = default ; deque_iterator (pointer c, map_pointer n) : cur (c), first (*n), last (*n + buffer_size ()), node (n) {} void set_node (map_pointer new_node) { node = new_node; first = *new_node; last = first + buffer_size (); } reference operator *() const { return *cur; } pointer operator ->() const { return cur; } self& operator ++(){ ++cur; if (cur == last){ set_node (node + 1 ); cur = first; } return *this ; } self operator ++(int ){ self tmp = *this ; ++(*this ); return tmp; } self& operator --(){ if (cur == first){ set_node (node - 1 ); cur = last; } --cur; return *this ; } self operator --(int ){ self tmp = *this ; --(*this ); return tmp; } self& operator +=(difference_type n){ difference_type offset = n + (cur - first); if (offset >= 0 && static_cast <size_t >(offset) < buffer_size ()) cur += n; else { difference_type bs = static_cast <difference_type>(buffer_size ()); difference_type node_offset = offset > 0 ? offset / bs : -(( -offset - 1 ) / bs) - 1 ; set_node (node + node_offset); cur = first + (offset - node_offset * bs); } return *this ; } self operator +(difference_type n) const { self tmp = *this ; return tmp += n; } self& operator -=(difference_type n){ return *this += -n; } self operator -(difference_type n) const { self tmp = *this ; return tmp -= n; } difference_type operator -(const self& rhs) const { return difference_type (buffer_size ()) * (node - rhs.node - 1 ) + (cur - first) + (rhs.last - rhs.cur); } reference operator [](difference_type n) const { return *(*this + n); } bool operator ==(const self& rhs) const { return cur == rhs.cur && node == rhs.node; } bool operator !=(const self& rhs) const { return !(*this == rhs); } bool operator <(const self& rhs) const { return (node == rhs.node) ? (cur < rhs.cur) : (node < rhs.node); } };
dequeue具体实现:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 #ifndef MY_DEQUE_H #define MY_DEQUE_H #include "my_allocator.h" #include "my_iterator.h" #include <cstddef> namespace mystl{template <typename T, class Alloc = MyAllocator<T>>class MyDeque{public : using value_type = T; using allocator_type = Alloc; using size_type = std::size_t ; using reference = value_type&; using const_reference = const value_type&; using iterator = deque_iterator<T, T&, T*>; using const_iterator = deque_iterator<T, const T&, const T*>; private : using map_pointer = T**; allocator_type alloc_; map_pointer map_{nullptr }; size_type map_size_{0 }; iterator start_{}; iterator finish_{}; size_type size_{0 }; static size_t buffer_size () { return __deque_buffer_size(0 , sizeof (T)); } T* allocate_node () { return alloc_.allocate (buffer_size ()); } void deallocate_node (T* p) { alloc_.deallocate (p, buffer_size ()); } void create_map_and_nodes (size_type n) { size_type num_nodes = n / buffer_size () + 1 ; map_size_ = (num_nodes + 2 > 8 ) ? num_nodes + 2 : 8 ; map_ = new T*[map_size_]; for (size_type i = 0 ; i < map_size_; ++i) { map_[i] = nullptr ; } map_pointer nstart = map_ + (map_size_ - num_nodes) / 2 ; map_pointer nfinish = nstart + num_nodes - 1 ; for (map_pointer cur = nstart; cur <= nfinish; ++cur) { *cur = allocate_node (); } start_.set_node (nstart); start_.cur = start_.first; finish_.set_node (nfinish); finish_.cur = finish_.first + (n % buffer_size ()); } void reallocate_map (size_type nodes_to_add, bool add_at_front) { size_type old_num_nodes = finish_.node - start_.node + 1 ; size_type new_num_nodes = old_num_nodes + nodes_to_add; if (map_size_ >= new_num_nodes + 2 ){ map_pointer new_start = map_ + (map_size_ - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0 ); if (new_start != start_.node){ if (new_start < start_.node){ for (size_type i = 0 ; i < old_num_nodes; ++i) { new_start[i] = start_.node[i]; } } else { for (size_type i = old_num_nodes; i > 0 ; --i) { new_start[i - 1 ] = start_.node[i - 1 ]; } } start_.set_node (new_start); finish_.set_node (new_start + old_num_nodes - 1 ); } return ; } size_type new_map_size = map_size_ ? map_size_ * 2 : 8 ; while (new_map_size < new_num_nodes + 2 ) new_map_size *= 2 ; map_pointer new_map = new T*[new_map_size]; for (size_type i = 0 ; i < new_map_size; ++i) { new_map[i] = nullptr ; } map_pointer new_start = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0 ); for (size_type i = 0 ; i < old_num_nodes; ++i) { new_start[i] = start_.node[i]; } delete [] map_; map_ = new_map; map_size_ = new_map_size; start_.set_node (new_start); finish_.set_node (new_start + old_num_nodes - 1 ); } void reserve_map_at_back (size_type nodes_to_add = 1 ) { if (nodes_to_add > size_type (map_ + map_size_ - 1 - finish_.node)){ reallocate_map (nodes_to_add, false ); } } void reserve_map_at_front (size_type nodes_to_add = 1 ) { if (nodes_to_add > size_type (start_.node - map_)){ reallocate_map (nodes_to_add, true ); } } public : MyDeque () = default ; explicit MyDeque (size_type n) { create_map_and_nodes (n); size_ = n; iterator it = start_; for (size_type i = 0 ; i < n; ++i, ++it){ alloc_.construct (&*it); } } MyDeque (std::initializer_list<T> init){ create_map_and_nodes (init.size ()); size_ = 0 ; for (const auto & v : init){ push_back (v); } } ~MyDeque (){ if (size_) { for (iterator it = start_; it != finish_; ++it) { alloc_.destroy (&*it); } } if (map_) { for (size_type i = 0 ; i < map_size_; ++i) { if (map_[i]) { deallocate_node (map_[i]); } } delete [] map_; } } bool empty () const noexcept { return size_ == 0 ; } size_type size () const noexcept { return size_; } reference front () { if (empty ()) throw std::out_of_range ("deque is empty" ); return *start_; } reference back () { if (empty ()) throw std::out_of_range ("deque is empty" ); iterator tmp = finish_; --tmp; return *tmp; } const_reference front () const { if (empty ()) throw std::out_of_range ("deque is empty" ); return *start_; } const_reference back () const { if (empty ()) throw std::out_of_range ("deque is empty" ); const_iterator tmp = finish_; --tmp; return *tmp; } iterator begin () noexcept { return start_; } iterator end () noexcept { return finish_; } const_iterator begin () const noexcept { return const_iterator (start_.cur, start_.node); } const_iterator end () const noexcept { return const_iterator (finish_.cur, finish_.node); } void clear () { for (iterator it = start_; it != finish_; ++it) { alloc_.destroy (&*it); } start_.cur = start_.first; finish_.set_node (start_.node); finish_.cur = finish_.first; size_ = 0 ; } void push_back (const_reference value) { if (!map_) create_map_and_nodes (0 ); if (finish_.cur != finish_.last - 1 ){ alloc_.construct (finish_.cur, value); ++finish_.cur; } else { reserve_map_at_back (1 ); *(finish_.node + 1 ) = allocate_node (); alloc_.construct (finish_.cur, value); finish_.set_node (finish_.node + 1 ); finish_.cur = finish_.first; } ++size_; } void push_front (const_reference value) { if (!map_) create_map_and_nodes (0 ); if (start_.cur != start_.first){ --start_.cur; alloc_.construct (start_.cur, value); } else { reserve_map_at_front (1 ); *(start_.node - 1 ) = allocate_node (); start_.set_node (start_.node - 1 ); start_.cur = start_.last - 1 ; alloc_.construct (start_.cur, value); } ++size_; } void pop_back () { if (empty ()) throw std::out_of_range ("deque is empty" ); if (finish_.cur != finish_.first){ --finish_.cur; alloc_.destroy (finish_.cur); } else { finish_.set_node (finish_.node - 1 ); finish_.cur = finish_.last - 1 ; alloc_.destroy (finish_.cur); } --size_; } void pop_front () { if (empty ()) throw std::out_of_range ("deque is empty" ); if (start_.cur != start_.last - 1 ){ alloc_.destroy (start_.cur); ++start_.cur; } else { alloc_.destroy (start_.cur); start_.set_node (start_.node + 1 ); start_.cur = start_.first; } --size_; } }; } #endif