在 C++ STL(标准模板库)中,std::deque 是一种 双端队列(double-ended queue),它是一种支持在 序列两端高效插入和删除 的序列式容器。

一、deque 的基本概念

deque 是 “double-ended queue” 的缩写。
它类似于 std::vector,但有一个关键区别:

特性 vector deque
随机访问 ✅ O(1) ✅ O(1)
在末尾插入/删除 ✅ O(1) ✅ O(1)
在开头插入/删除 ❌ O(n) ✅ O(1)
连续内存 ❌ (分段存储)

因此:

如果你只在尾部操作,用 vector;

如果你需要频繁在两端插入或删除,用 deque。

二、deque 的底层结构

deque 并不是像 vector 一样存放在一整块连续内存中,而是:

由一系列固定大小的内存块(buffer)组成,再由一个中央的“map(指针数组)”来管理这些块。

大致结构如下:

[block1] → [block2] → [block3] → …
↑ ↑
| |
map[0] map[1] …

每个 block 存放若干元素,
这样在两端扩容时,只需分配或释放一个新的 block,而不需要像 vector 那样整体拷贝。

三、deque 的常用接口

1
2
3
4
5
6
7
dq.push_back(1);   // 尾插
dq.push_front(2); // 头插
dq.pop_back(); // 尾删
dq.pop_front(); // 头删
dq.front(); // 访问第一个元素
dq.back(); // 访问最后一个元素
dq[i]; // 随机访问

四、时间复杂度总结

操作 时间复杂度
随机访问(operator[]) O(1)
push_back / push_front O(1) 均摊
pop_back / pop_front O(1)
插入/删除中间元素 O(n)
查找 O(n)

五、典型应用场景

滑动窗口问题

// 维护单调队列
deque dq;

用于存储窗口中的元素索引,常见于算法题(如最大滑动窗口)。

队列实现

比如 BFS(广度优先搜索)

queue q; // 底层一般就是用 deque 实现的

需要双端插入删除的缓存结构

LRU 缓存、任务调度、模拟双端队列等。

六、注意事项

因为 deque 的存储不是连续的,
不能直接使用 &dq[0] 获得一个连续数组指针。

若需要和 C 接口交互(如 memcpy),应使用 vector。

迭代器在扩容或插入删除时可能失效(尤其是中间位置)。

deque 的 iterator

deque_iterator —— 双端块迭代器
1️⃣ 数据结构
pointer cur; // 当前元素
pointer first; // 当前块的起始位置
pointer last; // 当前块的末尾(one past)
map_pointer node; // 当前块在 map_ 中的位置

这些成员让迭代器能定位在“块 + 块内偏移”两个层面上。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
// Helper function for buffer size calculation
constexpr size_t __deque_buffer_size(size_t n, size_t sz){
return n != 0 ? n : (sz < 512 ? size_t(512 / sz) : size_t(1));
}

// ====================
// deque iterator (block-aware)
// ====================

template <typename T, typename Ref, typename Ptr>
class deque_iterator : public mystl::iterator<mystl::random_access_iterator_tag, T>{
public:
using self = deque_iterator<T,Ref, Ptr>;
using base_type = mystl::iterator<mystl::random_access_iterator_tag, T>;
using value_type = typename base_type::value_type;
using difference_type = typename base_type::difference_type;

using pointer = Ptr;
using reference = Ref;
using map_pointer = T**; // pointer to current node in map

pointer cur{nullptr}; // current element
pointer first{nullptr}; // start of block
pointer last{nullptr}; // end of block (one past)
map_pointer node{nullptr}; // pointer into map

static size_t buffer_size(){ return __deque_buffer_size(0, sizeof(T)); }

deque_iterator() = default;
deque_iterator(pointer c, map_pointer n) : cur(c), first(*n), last(*n + buffer_size()), node(n) {}

void set_node(map_pointer new_node){ node = new_node; first = *new_node; last = first + buffer_size(); }

reference operator*() const { return *cur; }
pointer operator->() const { return cur; }

self& operator++(){ ++cur; if (cur == last){ set_node(node + 1); cur = first; } return *this; }
self operator++(int){ self tmp = *this; ++(*this); return tmp; }
self& operator--(){ if (cur == first){ set_node(node - 1); cur = last; } --cur; return *this; }
self operator--(int){ self tmp = *this; --(*this); return tmp; }

self& operator+=(difference_type n){
difference_type offset = n + (cur - first);
if (offset >= 0 && static_cast<size_t>(offset) < buffer_size()) cur += n;
else {
difference_type bs = static_cast<difference_type>(buffer_size());
difference_type node_offset = offset > 0 ? offset / bs : -(( -offset - 1) / bs) - 1;
set_node(node + node_offset);
cur = first + (offset - node_offset * bs);
}
return *this;
}
self operator+(difference_type n) const { self tmp = *this; return tmp += n; }
self& operator-=(difference_type n){ return *this += -n; }
self operator-(difference_type n) const { self tmp = *this; return tmp -= n; }

difference_type operator-(const self& rhs) const {
return difference_type(buffer_size()) * (node - rhs.node - 1) + (cur - first) + (rhs.last - rhs.cur);
}
reference operator[](difference_type n) const { return *(*this + n); }

bool operator==(const self& rhs) const { return cur == rhs.cur && node == rhs.node; }
bool operator!=(const self& rhs) const { return !(*this == rhs); }

bool operator<(const self& rhs) const { return (node == rhs.node) ? (cur < rhs.cur) : (node < rhs.node); }
};

dequeue具体实现:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
#ifndef MY_DEQUE_H
#define MY_DEQUE_H

#include "my_allocator.h"
#include "my_iterator.h"

#include <cstddef>

namespace mystl{


template <typename T, class Alloc = MyAllocator<T>>
class MyDeque{
public:
using value_type = T;
using allocator_type = Alloc;
using size_type = std::size_t;
using reference = value_type&;
using const_reference = const value_type&;
using iterator = deque_iterator<T, T&, T*>;
using const_iterator = deque_iterator<T, const T&, const T*>;

private:
using map_pointer = T**;

allocator_type alloc_;
map_pointer map_{nullptr};
size_type map_size_{0};
iterator start_{};
iterator finish_{};
size_type size_{0};

static size_t buffer_size(){ return __deque_buffer_size(0, sizeof(T)); }
T* allocate_node(){ return alloc_.allocate(buffer_size()); }
void deallocate_node(T* p){ alloc_.deallocate(p, buffer_size()); }

void create_map_and_nodes(size_type n){
size_type num_nodes = n / buffer_size() + 1;

//那为什么要 num_nodes + 2?
// 我们希望:
// 除了存放当前使用的块,还要留出一定的空位,以便后续从两端扩展(push_front / push_back);
// 所以预留出额外的 “2” 个空指针空间(分别在前后各一个)。
// 那 > 8 ? ... : 8 是干啥?
// 这是最小容量限制。
// 即便一开始元素很少(比如 1~2 个),我们也希望 map_ 至少有 8 个指针空间
// 原因:
// 避免频繁的 map 扩容;
// 小 deque 初始化时也有一定扩展余地;
// 模仿 SGI STL 的实现策略(它默认最小 map 大小是 8)。

map_size_ = (num_nodes + 2 > 8) ? num_nodes + 2 : 8;
map_ = new T*[map_size_];

// Initialize map to nullptrs
for (size_type i = 0; i < map_size_; ++i) {
map_[i] = nullptr;
}

map_pointer nstart = map_ + (map_size_ - num_nodes) / 2;
map_pointer nfinish = nstart + num_nodes - 1;

// Allocate nodes
for (map_pointer cur = nstart; cur <= nfinish; ++cur) {
*cur = allocate_node();
}

start_.set_node(nstart);
start_.cur = start_.first;
finish_.set_node(nfinish);
finish_.cur = finish_.first + (n % buffer_size());
}

void reallocate_map(size_type nodes_to_add, bool add_at_front){
size_type old_num_nodes = finish_.node - start_.node + 1;
size_type new_num_nodes = old_num_nodes + nodes_to_add;

if (map_size_ >= new_num_nodes + 2){
map_pointer new_start = map_ + (map_size_ - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0);

if (new_start != start_.node){
if (new_start < start_.node){
for (size_type i = 0; i < old_num_nodes; ++i) {
new_start[i] = start_.node[i];
}
} else {
for (size_type i = old_num_nodes; i > 0; --i) {
new_start[i - 1] = start_.node[i - 1];
}
}
start_.set_node(new_start);
finish_.set_node(new_start + old_num_nodes - 1);
}
return;
}

// Allocate new larger map
size_type new_map_size = map_size_ ? map_size_ * 2 : 8;
while (new_map_size < new_num_nodes + 2) new_map_size *= 2;

map_pointer new_map = new T*[new_map_size];
// Initialize new map to nullptrs
for (size_type i = 0; i < new_map_size; ++i) {
new_map[i] = nullptr;
}

map_pointer new_start = new_map + (new_map_size - new_num_nodes) / 2 + (add_at_front ? nodes_to_add : 0);

// Copy existing node pointers
for (size_type i = 0; i < old_num_nodes; ++i) {
new_start[i] = start_.node[i];
}

delete [] map_;
map_ = new_map;
map_size_ = new_map_size;
start_.set_node(new_start);
finish_.set_node(new_start + old_num_nodes - 1);
}

void reserve_map_at_back(size_type nodes_to_add = 1){
if (nodes_to_add > size_type(map_ + map_size_ - 1 - finish_.node)){
reallocate_map(nodes_to_add, false);
}
}

void reserve_map_at_front(size_type nodes_to_add = 1){
if (nodes_to_add > size_type(start_.node - map_)){
reallocate_map(nodes_to_add, true);
}
}

public:
MyDeque() = default;

explicit MyDeque(size_type n){
create_map_and_nodes(n);
size_ = n;
iterator it = start_;
for (size_type i = 0; i < n; ++i, ++it){
alloc_.construct(&*it);
}
}


MyDeque(std::initializer_list<T> init){
create_map_and_nodes(init.size());
size_ = 0;
for (const auto& v : init){
push_back(v);
}
}

~MyDeque(){
// Destroy all elements
if (size_) {
for (iterator it = start_; it != finish_; ++it) {
alloc_.destroy(&*it);
}
}

// Deallocate all blocks
if (map_) {
for (size_type i = 0; i < map_size_; ++i) {
if (map_[i]) {
deallocate_node(map_[i]);
}
}
delete [] map_;
}
}

bool empty() const noexcept { return size_ == 0; }
size_type size() const noexcept { return size_; }


reference front() {
if (empty()) throw std::out_of_range("deque is empty");
return *start_;
}

reference back(){
if (empty()) throw std::out_of_range("deque is empty");
iterator tmp = finish_;
--tmp;
return *tmp;
}

const_reference front() const{
if (empty()) throw std::out_of_range("deque is empty");
return *start_;
}
const_reference back() const{
if (empty()) throw std::out_of_range("deque is empty");
const_iterator tmp = finish_;
--tmp;
return *tmp;
}

iterator begin() noexcept { return start_; }
iterator end() noexcept { return finish_; }
const_iterator begin() const noexcept { return const_iterator(start_.cur, start_.node); }
const_iterator end() const noexcept { return const_iterator(finish_.cur, finish_.node); }

void clear(){
for (iterator it = start_; it != finish_; ++it) {
alloc_.destroy(&*it);
}
start_.cur = start_.first;
finish_.set_node(start_.node);
finish_.cur = finish_.first;
size_ = 0;
}


void push_back(const_reference value){
if (!map_) create_map_and_nodes(0);

if (finish_.cur != finish_.last - 1){
// Construct in-place
alloc_.construct(finish_.cur, value);
++finish_.cur;
} else {
// Allocate new block at back
reserve_map_at_back(1);
*(finish_.node + 1) = allocate_node();
alloc_.construct(finish_.cur, value);
finish_.set_node(finish_.node + 1);
finish_.cur = finish_.first;
}
++size_;
}

void push_front(const_reference value){
if (!map_) create_map_and_nodes(0);

if (start_.cur != start_.first){
--start_.cur;
alloc_.construct(start_.cur, value);
} else {
// Allocate new block at front
reserve_map_at_front(1);
*(start_.node - 1) = allocate_node();
start_.set_node(start_.node - 1);
start_.cur = start_.last - 1;
alloc_.construct(start_.cur, value);
}
++size_;
}

void pop_back(){
if (empty()) throw std::out_of_range("deque is empty");

if (finish_.cur != finish_.first){
--finish_.cur;
alloc_.destroy(finish_.cur);
} else {
// Move to previous block
finish_.set_node(finish_.node - 1);
finish_.cur = finish_.last - 1;
alloc_.destroy(finish_.cur);
}
--size_;
}

void pop_front(){
if (empty()) throw std::out_of_range("deque is empty");

if (start_.cur != start_.last - 1){
alloc_.destroy(start_.cur);
++start_.cur;
} else {
alloc_.destroy(start_.cur);
start_.set_node(start_.node + 1);
start_.cur = start_.first;
}
--size_;
}
};

} // namespace mystl

#endif // MY_DEQUE_H